DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4534B
 LSI
 Real time 5-decade counter

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4534B is a 5 -decade ripple counter. The binary outputs of the decade counters are time-multiplexed by an internal scanner on four BCD outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{3}\right)$. The selected decade is indicated by a logic HIGH on the appropriate digit select output (OS_{0} : units, $1 ; \mathrm{OS}_{1}$: tens, $10 ; \mathrm{OS}_{2}$: hundreds, $10^{2} ; \mathrm{OS}_{3}$: thousands, $10^{3} ; \mathrm{OS}_{4}$: ten thousands, 10^{4}).

The binary outputs (O_{0} to O_{3}) and the select outputs $\left(\mathrm{OS}_{0}\right.$ to $\left.\mathrm{OS}_{4}\right)$ are 3-state controlled via enable inputs $\overline{\mathrm{EO}}$ and $\overline{\mathrm{EOS}}$ respectively, allowing interface with other bus orientated devices. Cascading may be accomplished by using the carry out (TC). The counter is triggered by a LOW to HIGH transition on the decade clock (CPA) and is reset by a HIGH level on the master reset (MR). The
scanner is triggered by a LOW to HIGH transition on the scanner clock (CPS) and is reset (select ten thousand counter) by a HIGH level on the scanner reset ($\mathrm{MR}_{\mathrm{sc}}$).

The counter can operate in four modes depending on the state of the mode select inputs $\left(\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}}\right)$. The error detector will detect an error when a positive edge on CPA is not accompanied by a negative edge on the error detector clock $\overline{\text { CPE }}$ or vice versa, within time limits adjusted by external capacitors connected to $\mathrm{C}_{\text {ext } 1}$ and $\mathrm{C}_{\text {ext } 2 \text {. Three or }}$ more detected errors result in a HIGH level on the error output (OER). The error detector is reset by a HIGH level on MR.

Schmitt-trigger action in the clock inputs makes the circuit highly tolerant to slower clock rise and fall times.

7274602.1

Fig. 1 Pinning diagram.
$\begin{array}{ll}\text { HEF4534BP(N): } & \text { 24-lead DIL; plastic (SOT101-1) } \\ \text { HEF4534BD(F): } & \text { 24-lead DIL; ceramic (cerdip) (SOT94) } \\ \text { HEF4534BT(D): } & \text { 24-lead SO; plastic (SOT137-1) }\end{array}$
(): Package Designator North America

PINNING

O_{1} to O_{3}	BCD outputs
OS_{0} to OS_{3}	digit select outputs
OER	error output
CPA	decade clock input
CPS	scanner clock input
$\overline{\mathrm{CPE}}$	error detector clock input
$\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}}$	mode select inputs
$M R$	master reset input
$\mathrm{MR}_{\text {sc }}$	scanner reset input
TC	carry out

FAMILY DATA, IDD LIMITS category LSI
See Family Specifications

Fig. 2 Functional block diagram.
\qquad

MODE CONTROL FUNCTION TABLE

SELECT INPUTS		1ST DECADE OUTPUT	CARRY TO 2ND STAGE	CARRY TO 4TH STAGE	MODE
$\mathrm{S}_{\text {A }}$	S_{B}				
L	L	normal count and display	at 9 to 0 transition of the 1st decade	at 9 to 0 transition of the 3rd decade	5-decade counter
L	H	inhibited	input clock	input clock	test purposes: clock directly into stages 1, 2 and 4
H	H	inhibited	at 4 to 5 transition of the 1 st decade	at 9 to 0 transition of the 3rd decade	4-decade counter with $\div 10$ and roundoff at front end
H	L	display counts: $\begin{aligned} & 3,4,5,6,7=5 \\ & 8,9,0,1,2=0 \end{aligned}$	at 7 to 8 transition of the 1 st decade	at 9 to 0 transition of the 3rd decade	4-decade counter; $1 / 2$-pence capability

The skew time is the time difference between the LOW to HIGH transition of CPA and the HIGH to LOW transition of $\overline{\mathrm{CPE}}$ or vice versa (see Fig.4). The skew time is typically proportional to the external capacitor ($\mathrm{C}_{\text {ext }}$) connected from $\mathrm{C}_{\text {ext1 }}$ and $\mathrm{C}_{\text {ext2 }}$ (pins 1 and 22) to V_{SS}. The error detector will count an error when a positive edge on the counter clock CPA is not succeeded by a negative edge on
the error detector clock $\overline{\text { CPE }}$ within a skew time $\mathrm{t}_{\mathrm{SK} 1}$ (adjustable by $\mathrm{C}_{\mathrm{ext1}}$ at pin 1). The same holds for a negative edge at CPE succeeded by a positive on CPA within a skew time $\mathrm{t}_{\mathrm{SK} 2}$ (adjustable by $\mathrm{C}_{\text {ext2 }}$ at pin 22). If error detection is not needed, $\overline{\text { CPE must be either HIGH or }}$ LOW and no $\mathrm{C}_{\text {ext }}$ is applied. For further information see Fig.5.

Fig. 4 Skew times timing diagram; $\mathrm{t}_{\text {WCPA }}>\mathrm{t}_{\mathrm{SK} 1}$; $t_{\text {WCPE }}>t_{\text {SK2 }}$.

Note 1: Skew in this area results in counted error.
Note 2: Skew in the area between max. and min. curves may or may not result in counted error.
Note 3: Skew in this area results in no error counted.
Fig. 5 Typical clock skew as a function of the supply voltage. This graph is accurate for $C_{\text {ext }} \geq 100 \mathrm{pF}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 6 Carry timing diagram.
LSI

Note: If $\mathrm{S}_{\mathrm{B}}=\mathrm{H}$, the 1st decade is inhibited and the cycle will be shortened to four stages (see dotted lines).
Fig. 7 Scanner timing diagram.

Fig. 8 Counter timing diagram.

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CPA} \rightarrow \mathrm{O}_{\mathrm{n}}$ D1 selected HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 300 \\ 130 \\ 95 \end{array}$	$\begin{aligned} & 600 \\ & 260 \\ & 190 \end{aligned}$	ns ns ns	$\begin{array}{r} 283 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 119 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 87 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 240 \\ 100 \\ 75 \end{array}$	$\begin{aligned} & \hline 480 \\ & 200 \\ & 150 \end{aligned}$	ns ns ns	$\begin{array}{r} \hline 213 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 89 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 67 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
$\mathrm{CPA} \rightarrow \mathrm{O}_{\mathrm{n}}$ D5 selected HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 550 \\ & 230 \\ & 170 \end{aligned}$	$\begin{array}{r} 1100 \\ 460 \\ 340 \end{array}$	ns ns ns	$\begin{aligned} & 523 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 219 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 162 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tpLH	$\begin{aligned} & 550 \\ & 230 \\ & 170 \end{aligned}$	$\begin{array}{r} 1100 \\ 460 \\ 340 \end{array}$	ns ns ns	$\begin{aligned} & 523 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 219 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 162 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
$\mathrm{CPA} \rightarrow \mathrm{TC}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \hline 420 \\ & 190 \\ & 140 \end{aligned}$	$\begin{aligned} & \hline 840 \\ & 380 \\ & 280 \end{aligned}$	ns ns ns	$\begin{aligned} & \hline 393 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 179 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 132 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 200 \\ 85 \\ 60 \end{array}$	$\begin{aligned} & 400 \\ & 170 \\ & 120 \end{aligned}$	ns ns ns	$\begin{aligned} 173 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 74 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 52 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\text { MR } \rightarrow \text { OER }$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 140 \\ 65 \\ 50 \end{array}$	$\begin{aligned} & 280 \\ & 130 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} 113 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 54 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{CPS} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 225 \\ 95 \\ 70 \end{array}$	$\begin{aligned} & \hline 450 \\ & 190 \\ & 140 \end{aligned}$	ns ns ns	$\begin{array}{r} \hline 198 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 84 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 62 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{array}{r} 225 \\ 95 \\ 70 \end{array}$	$\begin{aligned} & 450 \\ & 190 \\ & 140 \end{aligned}$	ns ns ns	$\begin{array}{r} 198 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 84 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 62 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
$\mathrm{CPS} \rightarrow \mathrm{OS}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 170 \\ 70 \\ 50 \end{array}$	$\begin{aligned} & 340 \\ & 140 \\ & 100 \end{aligned}$	ns ns ns	$\begin{array}{r} 143 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 59 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
$\mathrm{CPS} \rightarrow \mathrm{OS}_{\mathrm{n}}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} \hline 170 \\ 70 \\ 50 \end{array}$	$\begin{aligned} & 340 \\ & 140 \\ & 100 \end{aligned}$	ns ns ns	$\begin{array}{r} 143 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 59 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$

Real time 5-decade counter

| | $\mathbf{V}_{\mathbf{D D}}$ | | SYMBOL | MIN. | TYP. | MAX. |
| :---: | ---: | :--- | ---: | ---: | ---: | ---: |\(\left.\quad \begin{array}{c}TYPICAL EXTRAPOLATION

FORMULA\end{array}\right]\)

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\mathbf{D D}}$	SYMBOL	MIN.	TYP.	MAX.	
	\mathbf{V}	5		2,5	5	MHz
Maximum clock	10	$\mathrm{f}_{\text {max }}$	6	12	MHz	
pulse frequency	15		8	16	MHz	
CPA and CPS						

	V_{DD} V	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P) ${ }^{(1)}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 1100 f_{i}+\sum\left(f_{0} C_{L}\right) \times V_{D D^{2}} \\ 4800 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 12000 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load cap. (pF) $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Note

1. $\mathrm{C}_{\mathrm{ext}}=0$.

APPLICATION INFORMATION

Fig. 9 Two HEF4534B ICs connected for cascade operation. TC is HIGH for a single clock period when all five BCD decades go to zero. TC also goes HIGH when MR is applied.

Fig. 10 Forcing a decade to the O_{n} outputs. When the O_{n} outputs of a given decade are required, this configuration will lock-up the selected decade within four clock cycles. The select line feed back may be hardwired or switched.

